Differentiation formulas

Procedural rules

Name of rule Formula
Constant multiple ddu(cf)=cdfdu\frac{d}{du} (cf) = c \frac{df}{du}
Sum ddu(f+g)=dfdu+dgdu\frac{d}{du} (f + g) = \frac{df}{du} + \frac{dg}{du}
Difference ddu(fg)=dfdudgdu\frac{d}{du} (f - g) = \frac{df}{du} - \frac{dg}{du}
Linearity ddu(af+bg)=adfdu+bdgdu\frac{d}{du} (af + bg) = a\frac{df}{du} + b\frac{dg}{du}
Product ddu(fg)=fdgdu+gdfdu\frac{d}{du} (fg) = f\frac{dg}{du} + g\frac{df}{du}
Quotient ddu(fg)=gdfdufdgdug2\frac{d}{du} (\frac{f}{g}) = \frac{g\frac{df}{du} - f\frac{dg}{du}}{g^2}

Basic formulas

Name of rule Formula
Constant ddu(c)=0\frac{d}{du} (c) = 0
Exponential ddu(eu)=eu\frac{d}{du} (e^u) = e^u
Power ddu(un)=nun1\frac{d}{du} (u^n) = nu^{n-1}
Logarithmic ddu(lnu)=1u\frac{d}{du} (\ln \lvert u \rvert) = \frac{1}{u}
Trigonometric